Trapped Protostellar Winds and their Breakout
نویسندگان
چکیده
Observations show that high-velocity jets stem from deeply embedded young stars, which may still be experiencing infall from their parent cloud cores. Yet theory predicts that, early in this buildup, any outgoing wind is trapped by incoming material of low angular momentum. As collapse continues and brings in more rapidly rotating gas, the wind can eventually break out. Here we model this transition by following the motion of the shocked shell created by impact of the wind and a rotating, collapsing envelope. We first demonstrate, both analytically and numerically, that our previous, quasi-static solutions are dynamically unstable. Our present, fully time-dependent calculations include cases both where the wind is driven back by infall to the stellar surface, and where it erupts as a true outflow. For the latter, we find that the time of breakout is 5× 10 yr for wind speeds of 200 km s. The reason for the delay is that the shocked material, including the swept-up infall, must be able to climb out of the star’s gravitational potential well. We explore the critical wind speed necessary for breakout as a function of the mass transport rates in the wind and infall, as well as the cloud rotation rate Ω◦ and time since the start of infall. Breakout does occur for realistic parameter choices. The actual breakout times would change if we relaxed the assumption of perfect mixing between the wind and infall material. Our expanding shells do not exhibit the collimation of observed jets, but continue to expand laterally. To halt this expansion, the density in the envelope must fall off less steeply than in our model. Subject headings: circumstellar material — ISM: jets and outflows — stars: mass loss — stars: Pre-Main Sequence — Hydrodynamics: Shocks
منابع مشابه
The Interaction of Protostellar Winds with Their Environment
The time of protostellar wind breakout may be determined by the time-dependence of the infalling flow, rather than any sudden change in the driving wind. I examine the transition from pure infall to simultaneous infall and outflow, or pure outflow, in the context of rotating, inside-out collapse. Assuming a protostellar wind launched from the stellar surface, the breakout time is determined as ...
متن کاملThe Breakout of Protostellar Winds in the Infalling Environment
The time of protostellar wind breakout may be determined by the evolution of the infalling flow, rather than any sudden change in the central engine. I examine the transition from pure infall to outflow, in the context of the inside-out collapse of a rotating molecular cloud core. I have followed numerically the motion of the shocked shell created by the impact of a stellar wind and infalling g...
متن کاملBipolar Molecular Outflows Driven by Hydromagnetic Protostellar Winds.
We demonstrate that magnetically collimated protostellar winds will sweep ambient material into thin, radiative, momentum-conserving shells whose features reproduce those commonly observed in bipolar molecular outflows. We find that the typical position-velocity and mass-velocity relations occur in outflows in a wide variety of ambient density distributions, regardless of the time histories of ...
متن کاملMass Limits to Primordial Star Formation from Protostellar Feedback
How massive were the first stars? This question is of fundamental importance for galaxy formation and cosmic reionization. Here we consider how protostellar feedback can limit the mass of a forming star. For this we must understand the rate at which primordial protostars accrete, how they and their feedback output evolve, and how this feedback interacts with the infalling matter. We describe th...
متن کاملTheory of Protostellar Accretion
This paper reviews current theoretical work on the various stages of accretion in protostars, and the relationship of these ideal stages to the spectral classes of observed protostellar systems. I discuss scaling relationships that have been obtained for models of pre-stellar cores as they evolve by ambipolar diffusion toward a central singularity, and expectations for the dynamical evolution a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003